- 产品组成
- 独特优势
- 功能参数
- 应用案例
-
a.液体加热原位样品杆 b.MEMS液体加热芯片 c.温度控制程序 d.温度控制器 e.高精度芯片组装仪 f.高真空检漏仪 g.原位液氛纳流控安全管理系统 h.附件包 i.液体杆清洗仪 j.芯片环境制样仓 -
业界最高分辨率:
1.独创的MEMS加工工艺,芯片视窗区域的氮化硅膜厚度最薄可达10 nm。
2.芯片封装采用键合内封以及环氧树脂外封双保险方式,使芯片间的夹层最薄仅约100~200 nm,超薄夹层大幅减少对电子束的干扰,
可清晰观察样品的原子排列情况,液相环境可实现原子级分辨。
3.经过特殊设计的芯片视窗形状,可避免氮化硅膜鼓起导致液层增厚而影响分辨率。
高安全性:
1.市面常见的其他品牌液体样品杆,由于受自身液体池芯片设计方案制约,只能通过液体泵产生的巨大压力推动大流量液体流经样品台
及芯片外围区域,有液体大量泄露的安全隐患。其液体主要靠扩散效应进入芯片中间的纳米孔道,芯片观察窗里并无真实流量流速控制。
2.采用纳流控专利技术,通过压电微控系统进行流体微分控制,实现纳升级微量流体输送,原位纳流控系统及样品杆中冗余的液体量仅
有微升级别,有效保证电镜安全。
3.采用高分子膜面接触密封技术,相比于o圈密封,增大了密封接触面积,有效减小渗漏风险。
4.采用超高温镀膜技术,芯片视窗区域的氮化硅膜具有耐高温低应力耐压耐腐蚀耐辐照等优点。
独有的多场耦合技术:
可在液相环境中实现光、电、热、流体多场耦合。
优异的热学性能:
1.高精密红外测温校正,微米级高分辨热场测量及校准,确保温度的准确性。
2.两电极的超高频控温方式,排除导线和接触电阻的影响,测量温度和电学参数更精确。
3.采用高稳定性贵金属加热丝(非陶瓷材料),既是热导材料又是热敏材料,其电阻与温度有良好的线性关系,加热区覆盖整个观测
区域,升温降温速度快,热场稳定且均匀,稳定状态下温度波动≤±0.1℃。
4.采用闭合回路高频动态控制和反馈环境温度的控温方式,高频反馈控制消除误差,控温精度±0.01℃。
5.独特多级复合加热MEMS芯片设计,控制加热过程热扩散,极大抑制升温过程的热漂移,确保实验的高效观察。
智能化软件和自动化设备:
1.人机分离,软件远程控制实验条件,全程自动记录实验细节数据,便于总结与回顾。
2.自定义程序升温曲线。可定义10步以上升温程序、恒温时间等,同时可手动控制目标温度及时间,在程序升温过程中发现需要变温
及恒温,可即时调整实验方案,提升实验效率。
3.内置绝对温标校准程序,每块芯片每次控温都能根据电阻值变化,重新进行曲线拟合和校正,确保测量温度精确性,保证加热实验的
重现性及可靠性。
4.全流程配备精密自动化设备,协助人工操作,提高实验效率。
团队优势:
1.团队带头人在原位液相TEM发展初期即参与研发并完善该方法。
2.独立设计原位芯片,掌握芯片核心工艺,拥有多项芯片专利。
3.团队20余人从事原位液相TEM研究,可提供多个研究方向的原位实验技术支持。
-
功能
参数
杆身材质
高强度钛合金
视窗膜厚
标配20nm(可升级10nm)
适用电镜
Thermo Fisher/FEI, JEOL, Hitachi
适用极靴
ST, XT, T, BioT, HRP, HTP, CRP
倾转角
α=±20°(实际范围取决于透射电镜和极靴型号)
(HR)TEM/STEM
支持
(HR)EDS/EELS/SAED
支持
-
在a Snapshots of the trajectory (1, 4, 7, 10 ps) of the dynamic structure under the electrically neutral condition. The electrically neutral model contained 40 In atoms (labeled from 240 to 279) and 80 H2O molecules in a cubic box with a length of 15.31 Å. b Charge of selected In atoms as a function of time under the electrically neutral condition. These atoms are labeled in a. c Snapshots of the trajectory of the dynamic structure (1, 4, 7, 10 ps) under positively charged condition. The In atoms are labeled from 200 to 239. d Charge of the selected In atoms as a function of time under positively charged condition. These particles are labeled in c. Atom color code: red, O; white, H; Other colors, In Identification of a quasi-liquid phase at solid–liquid interface Nature Communications 13, 3601 (2022)
a Schematic illustration of the construction of MOLs from 6-connected Hf-clusters and 3-connected BTB ligands with the connectivity indicated by golden arrows. The elements are represented as Hf, red; O, blue; C, black. b Representative HAADF-STEM image and the corresponding elemental maps of Hf, C and O using Super-X EDS at cryogenic temperature. c A representative high-resolution HAADF-STEM image of MOLs shows hexagonal arrangements of clusters. d, e Tapping-mode AFM topography of the Hf-MOLs with different regions. f Height profile along the red line in d and blue line in e. Scale bars: b 500 nm; c 10 nm; d, e 1 µm
Observation of formation and local structures of metal-organic layers via complementary electron microscopy techniques Nature Communications volume 13, Article number: 5197 (2022)
Observations and analysis of microfluid unit migration at the microscopic interface in liquid cell TEM. (a) Sequential TEM images from Movie S2 (cut from Movie S1) showing the motion of the Au nanoparticles at the gas–liquid interface. The scale bar is 100 nm. The blurry TEM images at 0.0 and 34.0 s showed that the full liquid layer passed through the view window. (b) The gray value as a function of time for the view window center marked in Figure S8, which was obtained from Movie S1. (c) The velocity as a function of time for 15 nanoparticles marked in Figures S9–S23. (d) Corresponding trajectory of 12 nanoparticles marked in Figure S24. (e) Trajectories of 12 nanoparticles marked in Figure S41
In Situ TEM Observation of Stagnant Liquid Layer Activation in Nanochannel Nano Lett. 2022, 22, 17, 6958–6963
相关产品